Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space

نویسندگان

چکیده

Let $ \mu be a positive Borel measure on the interval [0, 1) $. The Hankel matrix {\mathcal H}_\mu = (\mu_{n+k})_{n, k\geq 0} with entries \mu_{n, k} \mu_{n+k} induces operator H}_\mu(f)(z) \sum\limits_{n 0}^\infty\left(\sum\limits_{k 0}^\infty\mu_{n,k}a_k\right)z^n space of all analytic functions f(z) \sum^\infty_{n 0}a_nz^n in unit disk {\mathbb{D}} In this paper, we characterize boundedness and compactness from Bloch type spaces to BMOA space. Moreover obtain essential norm {\mathcal{B}}^\alpha {\mathcal{B}} BMOA.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

essential norm of generalized composition operators from weighted dirichlet or bloch type spaces to q_k type spaces

in this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted dirichlet spaces or bloch type spaces to $q_k$ type spaces.

متن کامل

essential norm of generalized composition operators from weighted dirichlet or bloch type spaces to q_k type spaces

in this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted dirichlet spaces or bloch type spaces to $q_k$ type spaces.

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Generalized Composition Operator from Bloch–type Spaces to Mixed–norm Space on the Unit Ball

Let H(B) be the space of all holomorphic functions on the unit ball B in CN , and S(B) the collection of all holomorphic self-maps of B . Let φ ∈ S(B) and g ∈ H(B) with g(0) = 0 , the generalized composition operator is defined by C φ ( f )(z) = ∫ 1 0 R f (φ(tz))g(tz) dt t , Here, we characterize the boundedness and compactness of the generalized composition operator acting from Bloch-type spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIMS mathematics

سال: 2021

ISSN: ['2473-6988']

DOI: https://doi.org/10.3934/math.2021198