Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space
نویسندگان
چکیده
Let $ \mu be a positive Borel measure on the interval [0, 1) $. The Hankel matrix {\mathcal H}_\mu = (\mu_{n+k})_{n, k\geq 0} with entries \mu_{n, k} \mu_{n+k} induces operator H}_\mu(f)(z) \sum\limits_{n 0}^\infty\left(\sum\limits_{k 0}^\infty\mu_{n,k}a_k\right)z^n space of all analytic functions f(z) \sum^\infty_{n 0}a_nz^n in unit disk {\mathbb{D}} In this paper, we characterize boundedness and compactness from Bloch type spaces to BMOA space. Moreover obtain essential norm {\mathcal{B}}^\alpha {\mathcal{B}} BMOA.
منابع مشابه
Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملessential norm of generalized composition operators from weighted dirichlet or bloch type spaces to q_k type spaces
in this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted dirichlet spaces or bloch type spaces to $q_k$ type spaces.
متن کاملessential norm of generalized composition operators from weighted dirichlet or bloch type spaces to q_k type spaces
in this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted dirichlet spaces or bloch type spaces to $q_k$ type spaces.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeneralized Composition Operator from Bloch–type Spaces to Mixed–norm Space on the Unit Ball
Let H(B) be the space of all holomorphic functions on the unit ball B in CN , and S(B) the collection of all holomorphic self-maps of B . Let φ ∈ S(B) and g ∈ H(B) with g(0) = 0 , the generalized composition operator is defined by C φ ( f )(z) = ∫ 1 0 R f (φ(tz))g(tz) dt t , Here, we characterize the boundedness and compactness of the generalized composition operator acting from Bloch-type spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIMS mathematics
سال: 2021
ISSN: ['2473-6988']
DOI: https://doi.org/10.3934/math.2021198